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Abstract 

A generalization of the catchment region poim symmetry theorem is given withi_n the 
framework of lattice theory. The symmetry conditions, formulated in terms of lattice 
theory, interrelate all stationary and distorted configurations of various ground state and 
electronic excited stare molecular species, transition structures, excimers and exciplexes. 

l i  Introduction 

A brief review of the terminology required for the general results of this paper 
is given below. 

Each point of a nuclear configuration space corresponds to a relative arrangement 
of the nuclei, specified by some intemal coordinates [1]. Each nuclear configuraüon 
space belongs to a specified overall stoichiometry, representing the family of all pos- 
sible arrangements of a given collection of atoms. The configuration space can be 
chosen as a metric space M, with a metric d expressing the dissimilarity of configura- 
tions as distance within space M [2]. For a stoichiometric family of molecular systems 
of N nuclei (with N > 3), the intemal degrees of freedom are 3N - 6, that is, the 
dimension of M is 3N - 6. In any electronic state, the molecular energy is a function 
of the nuclear configuration, and this function can be regarded as a potential energy 
surface over the configurafion space M. 

Various molecular species of the given stoichiometry may be represented by 
domains within the configuration space M: minor distortions of configurations in the 
vicinity of the equilibrium configuration do not alter the chemical identity of the 
species. For a specified electronic state, e.g. for the electronic ground state, these 
domains can be chosen as the catchment regions of the corresponding potential energy 
sufface [2-4]. With reference to a given electronic stare, a catchment region is defined 
as the collection of all those distorted configurations for which an infinitely s l o w ,  
vibrationless relaxation of the nuclear arrangement leads to the same equilibfium 
nüclear configuration. If within a region of this space M the internal coordinates are 
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derived from the mass-weighted Cartesian coordinates of the nuclei, where the x i, Yi' 

and z i coordinates of each nucleus are multiplied by the square root m!/2, of the corre- 
sponding nuclear mass m i, then the above relaxations correspond to steepest descent 
paths on the potential energy surface, describing the collective nuclear motions in 
dynamic models. Then, an equivalent def'mition of a catchment region can be given as 
the collection of all those points of the configuration space M from where steepest 
descent paths lead to the same critical point of the given potential energy surface. 

Each catchment region represents a formal chemical species, accounting for the 
conformational flexibility and all distortions that preserve the chemical identity of the 
species. For a given electronic state, the catchment regions generate a subdivision of the 
nuclear configuration space M. 

Each catchment region C0~, i) is specified according to the corresponding critical 
point K(&, i), where Ä, is the critical point index (that is, the number of negative 
eigenvalues of the local Hessian matrix), and i is a serial index. A ( 3 N -  6)-dimensional 
catchment region C(0, i) of a minimum K(0, i) represents the ith stable species, whereas 
a (3N - 7)-dimensional catchment region C(1,j) of a simple saddle point K(1,j) 
represents the jth transition structure of the given electronic state. The conformational 
freedom and the extent of distortions that preserve chemical identity are determined by 
the shape and extent of catchment regions. Large distortions typically lead to a different 
catchment region, that is, to a different chemical species. 

In general, for each electronic state, the shape of the potential surface is different. 
Consequently, for each electronic statt, the stable chemical species are associated with 
a different partitioning of the nuclear configuration space into domains; hence the 
catchment regions are different. By contrast, for any given nuclear configuration, the 
point symmetry of the nuclei is fixed and is not affected by the electronic state. One may 
study the interrelations among the chemical identity, stability, and symmetry of nuclear 
configurations by comparing two subdivision schemes of the nuclear configuration 
space M. For a given electronic state, the first subdivision scheine is based on the 
catchment regions C(&, i), and the second one is based on the point symmetry domains 
Gkl of M. The point symmetry domain G/a is the Ith maximum connected component of 
subset G« of M, where each G« set contains the points of nuclear configurations having 
point symmetry group ge. Only the catchment region subdivision is dependent on the 
electronic state. The point symmetry of the nuclear frameworks is a fink among all 
electronic states of a fixed stoichiometry that has been utilized as a tool in the search 
for critical points of potenüal energy surfaces [2,5-7]. 

We shaU make the usual assumption: the potential energy surfaces are every- 
where differentiable within the configuration domains we consider; hence, energy 
gradient is weh defined at each configuration. This assumption does not place any 
serious limitation on our analysis, since by applying an infinitesimal distortion of the 
potential energy surface at points of nondifferentiability, it can be converted into a 
function that is differentiable [2] and describes faithfully most of the chemically 
important topological properties of the original surface (see also ref. [8]). 
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2. A lattice model of point symmetry groups based on the catchment region 
point symmetry theorem 

The following result, referred to as the catchment region point symmetry 
theorem, has been proven recently [2,7]: 

Each critical point K(~, i) has all the symmetry elements of the corresponding 
catchment region C()t,, i). 

An equivalent formulation [7] is one that suggests more directly the approach of 
the present paper: 

Within each catchment region C(X, i), the nuclear configuration corresponding to 
the critical point K(X, i) has the highest point symmetry. 

The catchment region point symmetry theorem interrelates two very different 
molecular pmperües. The location of critical points and catchment regions of the 
potential energy surface depend on energy relations; by contrast, the point symmetries 
of nuclear configuraüons are purely geometrical properties. 

The theorem is general for the potential energy surfaces and catchment regions 
of all electronic states. The point symmetry group of nuclear configurations provides a 
condition that interrelates the catchment regions of different electmnic states. 

The second formulation of the theorem invokes directly the existence of a highest 
point symmetry group within each cätchment region. In general, there exists no natural 
linear order for point symmetry groups, based upon their group-subgmup relaüons 
(where each group is regarded as one of its own subgroups), since in a pair of point 
symmetry gmups each group may contain elements not present in the other group; 
hence, neither one is a subgroup of the other. Consequently, in an arbitrary collection 
of point symmetry gmups, it may be impossible to decide which group represents the 
highest or lowest symmetry. 

However, according to the catchment region point symmetry theorem, within a 
catchment region C()t,, i), the point symmetry group gk = g[K(X, i)] of the critical point 
K(;t, i) contains as subgmups all other gmups occurring in C(A,, i). Consequently, 
within each catchment region C(Ä, i) there exists a "highest" point symmetry. The 
theorem does not imply that the criücal point K(A,, i) is unique within C(~, i) in having 
the highest point symmetry: other, possibly all points K of the catchment region C(;t, i) 
may have this point symmetry, g[K] = gk = g[K(~, i)]. 

The important conclusion is the following: for any two point symmetry groups 
occurring for configurations within any catchment region C(;t, i) there exists a con- 
figuration with a point symmetry group that is a common supergmup of the two groups, 
that is, a group that contains both gmups and subgroups. Considering the gmup-subgroup 
relation as a partial order, any two point symmetry groups of C(~  i) have a join 
(supremum); consequently, the family of all point symmetry groups of C()~, i) is a 
higher semilattice. The catchment region point symmetry theorem guarantees the higher 
semilattice property for all catchment regions. 
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For an arbitrary family of point symmetry groups, there does not have to exist a 
unique lowest point symmetry group either. However, for a catchment region C(0, i) of 
a minimum point K(0, i), the dimension is 3N - 6, and all infinitesimal distor~ions of 
the minimum energy configuration will lead to configurations K that are still within the 
same catchment region, since a typical catchment region C(0, i) is an open set of the 
configuration space. Among these distortions, some will preserve some of the symmetry 
elements of the minimum configuration K(0, i); however, most distortions necessarily 
lead to configuraüons with trivial point symmetry only. It is evident that the trivial point 
symmetry group C 1 (for triatomic systems Cs) is a subgroup of all point symmetry 
groups occurring within a catchment region. Combining this with the result of the 
catchment region point symmetry theorem, one concludes that in a catchment region 
C(0, i) of a minimum point K(0, i) there exist both a smallest common subgroup and 
a largest common supergroup for all point symmetry groups occurring within C(0, i). 
Consequently, by taking the group-subgroup relation as the parüal order relation, the 
family of point symmetry groups occurring within a catchment region C(0, i) of a 
minimum point K(0, i) has both "join" (supremum) and "meet" (infimum) for any of the 
pairs of point s y m m e ~  groups. This implies that the family of point symmetry groups 
occurring within a catchment region C(0, i) of a minimum point K(0, i) is both a higher 
semilat~ice and a lower semilattice: consequently, it is a lanice. 

Lower dimensional catchment regions, for example, catchment regions C(1, i) of 
transition structure saddle points K(1, i), do not necessarily have the above property. 
Since the dimension is lower, in the above special case 3N - 7, it follows that not all 
infinitesimal distortions of the critical point K(1, i) are confined within its catchment 
region C(1, i); consequently, it is possible that no configuration K with a trivial point 
symmetry group occurs within C(1, i). This applies to the family of point symmetry 
groups within a catchment region C(1, i) of a transition structure, or to that within a 
catchment region C(Ä, i) of a critical point K(~, i) with a higher index ~, > 1. 

3. Summary 

The catchment region point symmetry theorem implies that the family of point 
symmetry groups of configurations occurring within any catchment region has an 
algebraic structure: they form a higher semilattice. The catchment regions of energy 
minima, representing stable molecules, must contain configurations of trivial symmetry; 
hence, it is esqgecially easy to show that the family of the point symmetry groups of con- 
figurations occurring in them is not only a higher semilattice, but also a lower semi- 
lattice: consequently, it is a lattice. Since a catchment region of a minimum contains all 
configuraüons that preserve the chemical identity of a stable species, the above result 
can be restated in terms of the family of all distorted configurations of a molecule: the 
point symmetry groups o f  the equilibrium and all distorted configurations o f  a molecule 
form a lattice, with the dominant element the point symmetry group of  the minimum 
configuration. 
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